
The network model and its relation to classical percolation in quantum Hall systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 2441

(http://iopscience.iop.org/0953-8984/3/14/023)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 23:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/14
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I .  Phys.: Condens. Matter3 (1991) 2441-2449. Printed in the UK 

COMMENT 

The network model and its relation to classical 
percolation in quantum Hall systems 

Lydia Jaeger 
Institut fiirTheoretischePhysik,Ziilpicher Strasse77,50WKb!n41, 
Federal Republic of Germany 
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Abstract. J T Chalker and P D Coddington proposed a model for studying the influence 
of quantum effects on the classical percolation transition in quantum Hall systems. A 
quantitative microscopic interpretation of the model is given, and the class of potentials 
which are described by the model is determined. An approximate calculation of the local- 
ization length proves that the classical localization-delocaation transition is not incor- 
porated in the model. 

1. Introduction 

Percolation provides an intuitive picture for localization of electronic states in (integer) 
quantum Hall systems. In a smooth two-dimensional random potential and strong 
perpendicular magnetic field, an electron followsequipotential lines [l]. For asymmetric 
random potential, the typicaldiameterofanequipotentiallinedivergesonlyat anenergy 
equal to the average potential (V(x ,  y ) )  [2]. Therefore, extended electronic states exist 
only at the centre of each Landau band. The critical exponent of the diverging diameter 
of equipotential lines as function of energy has been calculated to Y = 4/3 (see [3] and 
references therein). 

The classical percolation model for localization in quantum Hall systems is strictly 
valid only for vanishing magnetic length due to the neglect of any interference between 
electronic states on different equipotential lines. The most important correction for 
finite magnetic length is tunnelling near saddle points between equipotential lines of the 
same energy. Although quantum tunnelling has no significant influence in the tails of a 
Landau band, it is expected to have consequences near the band centre due to the nearly- 
extended nature of electronic states there. Especially, it  should alter characteristic 
features of the localization4elocalization transition, which is of principal interest for 
the understanding of the quantum Hall effect. 

Despite the importance of quantum corrections for the classical percolation 
transition, there have been only a few attempts to determine corrections to the per- 
colation model. The only proposition published until  now which allows quantitative 
(numerical) calculations is a network model introduced by J T Chalker and P D Cod- 
dington [4]. Their model is built up of two elements: nodes and links, which connect the 
nodes in such a way that a square network is formed. Each link is characterized by a 
randomly chosen phase. Nodes are described by a two-dimensional transfer matrix 
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Figure 1. The 0 parameter in the network model as a function of the reduced energy. 

which is chosen from a one-parameter family; the corresponding parameter is called 8. 
Due to the different orientation of the current flow along the asymptotes, nodes in one 
out of two subslices have to be characterized in a similar way by a 8’ parameter (see 
figure 3 in [4]). B and B’ are connected by equation (6) in [4] for the symmctricversion 
of the network model, which is invariant (on average) under rotation through 90”. To 
simplify the calculations, B (or rather 6”) has the same value at each node. 

The B parameter and the phases describing the links have been introduced into the 
network model solely by current conservation arguments. I n  the following section, a 
microscopic interpretation of the model parameters is given; thereby, the typical shape 
of a potential described by the model is deduced. The potential exhibitscertain charac- 
teristic features of a periodic potential. As a consequence, the classical percolation 
transition is not incorporated in the network model. This statement is affirmed by 
approximatelycalculatingthe localization length in section 3. The calculationshows that 
the localization-delocalization transition in the network model is driven solely by back- 
scattering effects. In the final section the comments on the model introduced by J T 
Chalker and P D Coddington are summarized briefly. 

2. Microscopic interpretation of the network model 

H A Fertig developed a wre-type approximation for an electron moving in a smooth 
potential and high magnetic field [5]t. In the high-field limit 

the cyclotron and centre coordinates describing the motion of an electron decouple; the 
t A complete and rather straightforward proof of the approximation is given in 161. 

llVVll 4 hw,/I, a B” (1) 
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centrecoordinates followequipotential linesexcept nearsaddle pointswhere H A Fertig 
calculated the two-dimensional transfer matrix (see equation (2.11) in [ 5 ] ;  note that 
the definition of the transfer matrix slightly differs from [4]). By moving along an 
equipotential line the electron picks up an additional phase equal to the number of flux 
quanta enclosed between this equipotential line and the x-axis multiplied by 2 z  (see 
equation (2.6) in [ 5 ] ) .  Each turning point-where the partial derivative of the potential 
with respect toychangesitssignandthe partialderivative with respect toxis non-zero- 
contributes an additional term n/2 (see equation (2.7) in [ 5 ] ) t .  

Using these approximate results, the network model is identified as a projection to 
one Landau level with the cyclotron and centre coordinates of the electronic motion 
being decoupled. The links correspond to isolated parts of equipotential lines, the nodes 
to saddle points. 

The potential near a saddle point can be expanded-after an appropriate isometric 
transformation of the coordinate system-in the form: 

Defining the reduced energy with respect to the saddle point by 

where n stands for the Landau level index, one obtains for the energy-dependence of 
the 0 and 0' parameter (figure 1): 

0(E)  = arcosh(d1 + e+')'@)) 

@'(E)  = arcosh(v1 t e-ny(E)). 

If one considers the symmetric version of the model, the reduced energy is the same in 
both formulae. Since 0 is a strictly monotonic increasing function of energy, it can be 
approximated linearly near the band centre. This justifies the identification assumed in 
[4] of critical exponents on the 0 scale with 'normal' critical exponents on the energy 
scale. Inthelimit ofaninfinitelyhighmagneticfield, 0 = B(E)assumesonlytwovalue+ 
0 = 0 and 0 = m-which corresponds to the absence of tunnelling in the classical limit. 

Fixing the 0 parameter (or rather 0') to the same value for all nodes means con- 
sidering saddle points with identical values of V,, which sets the effective zero of the 
energy scale. As the underlying potential should be symmetric to the Landau band 
centre, the common zero-point energy of the saddle points has to vanish. Consequently 
the network model incorporates quantum tunnelling only near saddle points with azero- 
point energy at the classical percolation threshold in the band centre. Moreover, the 
product of the curvature parameters U,Uy is chosen to be identical for all saddle points. 

The phase factors which characterize the liiks in the network model consist of two 
parts: the complex scattering matrices at the adjacent saddle points contribute a phase$ 
and, secondly, an electron picks up a phase while travelling along an equipotential line. 
Isolated turning points do not need to be considered since they always occur in pairs of 
opposite curvature due to the topological set out of the network and therefore, contrib- 
ute no additional phase. 

t For closed equipotential lines the dependence of the connection formulae on the choice of the coordinate 
system drops out of the calculations. 
t It is not possible to set this part of the phase factor to zero by a global gauge transformation, as was stated 
in [4]. 

.. 
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Following the notation of equation (9) in [4] and denoting the phases characterizing 
the links in the following way 

(A,).,,, = S, en0"J) ( n , m E { L . . . , M J )  

(c,)",,, = a,, e'vmb) (n ,  m E {l, . . . , M}) 

the calculation of the phase factors yields in cylindrical geometry: 

a,(j) = - 2 z P ( y )  + n/2 

em(j) = - h N * ( y )  - Z@(y) - IT 

Y m ( i )  = - L ~ N ' ( Y )  + ~ W Y )  
r,(i) = - ~ N " ( Y )  + n/2 

mE{1,3, .  . .,M - I} 

mE{2,4,  . . . ,  M }  

m E{l ,3 , .  , ., M - 1) 
m E {2,4,. . , , M } .  

Here @ ( y )  is defined by 

@(U) := YP + arg r(l + i ~ / 2 )  - (YP) WIvl/2) 

and X* denotes the number of flux quanta enclosed by the equipotential line between 
the two adjacent saddle points-more precisely between the corresponding classical 
turning point sat the considered energy-andthex-axis?. Instripgeometry, there isone 
@-type saddle point less per slice both at the lower and upper boundary of the network 
so that the phases at the boundaries are different: 

.](j) + y l ( j  - 1) = -2xN"(y)  +@(U) 

.rW + Y M U  - 1) = -2n"(y) - @(Y) 
( 8 4  

(8b)  

where No now denotes the flux quanta enclosed between two 8'-type saddle points in 
adjacent slices. As the phase shift due to scattering at saddle points is a given function 
of energy, the area of the 'unit cells' of the network has to vary randomly to allow for 
the random distribution of phase factors characterizing the links. 

The microscopic interpretation of the model parameters shows that the network 
model corresponds to a potential which exhibits a square network of (nearly) identical 
saddle points with a certain freedom in choosing the curvature parameters and the 
relative orientation of the asymptotes of adjacent saddle points. The square network is 
distorted in such a way as to give rise to a random variation of the area of each unit cell. 
The average distance between two saddle points is retained as the length scale in the 
model, as the definition of the localization length shows (equation (14) in [4]). 

In principle, it would be possible to include higher orders of the wm-approximation 
in the given interpretation of the network model. This would give rise to correction 
termsin theexpressionforthereducedenergy(3) andthephases(6)-(8); thcdetermined 
energy dependence of the 0 parameter (equation (4)) is exact if one inserts a generalized 
expression for the reduced energy [7]. The inclusion of higher-order corrections would 
not lead to any significant change in our understanding of the network model and, 
therefore, does not need to be considered. 

The given microscopic interpretation of the model now enables us to answer the 
question of whether the underlying classof potentials is sufficiently general to allow one 

t Integrated as usual from left to right, X* takes positive and negative values: the dependence on the 
considered link is not denoted explicitly. 
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to understand, by studying this model, the influence of quantum tunnelling on the 
localization-delocalization transition in a 'normal' smooth random potential. 

An important simplifying feature of the network model is to incorporate quantum 
tunnelling only at saddle points with a zero-point energy at the band centre. This 
simplification, though, turns out to be not very restrictive. Since the tunnelling prob- 
ability is exponentially small except for saddle points the energy of which coincides with 
that of the incoming wave (see equation (4)) and as there are only few saddle points? 
with a given zero-point energy, one expects quantum tunnelling to be important only 
near the classical percolation threshold. For sufficiently high magnetic fields, the leading 
correction to the classical percolation picture comes from saddle points at the band 
centre. The (small) fluctuation of zero-point energies of relevant saddle points should 
not lead to any significant correction. 

A more restrictive feature of the model is that it contains a non-vanishing density of 
saddle points at the same zero-point energy. This is a characteristic property of periodic 
potentials and does not occur for a general random potential. As a consequence of this 
non-vanishingdensity, the diameter of a typical equipotential line isof the order of unity 
in the network model for all energies off the band centre; the percolating line at the band 
centre is not accompanied by a divergence of the average diameter of equipotential lines 
in its vicinity. Thus, the model does not contain the classical percolation transition. The 
network model considers finite equipotential lines, which couple via infinitely many 
saddle points, whereas it would be more appropriate for the localization-delocalization 
transition in a smooth random potential to take into account divergent equipotential 
lines, which couple via few saddle points. 

As the density of saddle points at the band centre vanishes in the limit of infinite 
system size, it i s  in principle sufficient to consider only one saddle point. G V Mil'nikov 
and I M Sokolov [SI calculated for this the (quantum) contribution to the critical 
exponent of the localization length at the band centre to be A V  = 1. Adding to this the 
contribution due to the diverging average diameter of the equipotential lines, one gets 
for the critical exponent of the localization length v = 713. The agreement with the 
numerical data obtained in [4] and for a different model in [9] is remarkable and has 
been interpreted as evidence for the validity of the universality hypothesis. 

The-ertainly simplified-picture of divergent equipotential lines coupling via few 
saddle points assumes that quantum tunnelling can be treated as a correction to the 
classical percolation model. and does not alter qualitatively the nature of the electronic 
states even in close vicinity to the band centre. Although this assumption needs further 
investigation, there is evidence from numerical simulations of the classical percolation 
model that saddle pointsplay alesssignificant role than wasexpected [lo], For sufficiently 
large systems the percolating equipotential lines nearly always pass through one saddle 
point at most [ll]. 

One may think of generalizing the network model by introducing a smeared-out 
distribution of zero-point energies at the nodes. According to the above considerations, 
its main effect would be to remove the non-vanishing density ofsaddle points at the same 
energy. Comparison of results obtained for different distribQtions and with the delta- 
peaked distribution of [4] may provide a reasonable test for universality in this context. 
Ifacalculation ofthe spatialdistributionof eigenfunctions was possible for a distribution 
of zero-point energies which leads to a divergence of the equipotential lines at the band 

t 'Few' means here that their density vanishes in the thermodynamic limit. 
-. 
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centre, this could be used to estimate the importance of quantum tunnelling for the 
percolation picture. 

3. Delocalization due to backscattering 

The microscopic interpretation of the network model has shown that it  does not incor- 
porate the classical percolation transition. Thisstatement can be affirmed by an approxi- 
mate calculation of the localization length which retains delocalization due to diverging 
equipotential lines, but neglects any backscattering and, thereby, quantum mechanical 
interference effects. The network model does not exhibit delocalization in this approxi- 
mation. 

It is advantageous to introduce the transmission coefficient of a quasi-one-dimcn- 
sional network of width M normalized to the number of transmitting channels 

T : = ( 2 / M )  tr tt' (9) 
where t i s  the transmission amplitude matrix. If T,w(N) denotes the transmission coef- 
ficient of the network with width M and length N ,  one obtajns for the localization length 
(following the convention of equation (14) in 141): 

EL' = lim - (1/4N)In T,,,(N) 
N- * 

using the fact that the transmission coefficient scales with the Lyapunov exponent of 
smallest absolute value. The localization length of the two-dimensional network model 
is then obtained by extrapolating the quasi-one-dimensional localization lengths for 
wide samples: 

The lowest order classical approximation for the scattering process is to replace the 
transmission coefficient of the network by the product of the transmission coefficients 
of the slices building up the network: 

N 

T , ( N )  = n I-;). (12) 
, = L  

This implies that any backscattering effects are neglected, i.e. paths are not taken into 
account along which the electron is reflected several times, but is finally transmitted 
through the system, and any interference effects are neglected. The replacement (12) is 
a good test for the occurrence of the percolation transition as the localization length 
Calculated in this approximation diverges at energies where the average diameter of 
equipotential lines diverges itself. On the other hand, the approximate localization 
length remains finite if the percolating line passes through a non-vanishing number of 
saddle points per slice, which implies that the typical diameter of equipotential lines 
remains bounded in the vicinity of the corresponding energy. 

Applying the approximation first to the one-dimensional network of width M = 2 ,  
one can calculate the transmission coefficient for a single slice by using the fact that the 
upper left quarter of the transfer matrix is the inverse of the transmission amplitude 
matrix if incoming and outgoing channels are numbered accordingly (for the transfer 



Comment 2447 

matrix defining the network model see equations (9)-(12) in reference [4])t. In the 
approximation (12), one obtains for the localization length in cylindrical geometry 

E2 = 2/ln(cosh 8' cosh 8)  (13) 
since the sum of infinitely many randomly distributed phase-dependent terms can be 
replaced by a phase average. Equation (13) turns out to be an exact expression for the 
localization length of the one-dimensional network [12]. As the electronic states are 
extended over at most three 'unit cells' of the network, the cut-off of backscattering 
cannot influence the states significantly. It is even possible to get the exact result for the 
one-dimensional localization length without averaging, since (13) also follows if one 
extends the approximation (12) to the subslices of the network depicted in figure 3 of 
reference [4]. Nevertheless, for larger system widths it is necessary to consider at least 
one complete slice of the network as a unit to obtain an approximate localizailon length 
which does depend on the system width. 

Usingequations (9)-(12) ofreference [4], oneobtainsfor the transmissioncoefficient 
of a slice of the network of width M in cylindrical geometry: 

where q( j )  denotes an independent and uniformly distributed random phase variable 
for each slice j and 

a := cosh 8' cosh 8 (154  

c := sinh 8' sinh 8. (15b) 
After phase averaging one obtains in the approximation (12) for the localization length 
of a system of width M 

E&' = In{[a"/(u" - ch')]((a2 - c2)}. (16) 
Therefore, the localization length of the two-dimensional network model without back 
scattering is in cylindrical geometry 

5 = 4/ln[(cosh 8' cosh 8)2 - (sinh 8' sinh (17) 

(18) = 4/ln(eZY + 1 + e-"Y) 

where the latter equality holds for the symmetric version of the model. A comparison 
of the two-dimensional localization length calculated without back scattering with the 
exact one-dimensional localization length (figure 2) shows the strong influence of back- 
scattering effect sin the two-dimensional networkmodel. These effectsare solely respon- 
sible for the cross over from strongly localized states in the one-dimensional network 
to extended states in the two-dimensional network at the band centre. 

According to  (17), delocalized states in the direction of current flow considered here 
exist only if 0 and 8' vanish simultaneously. This situation corresponds to classical 
percolating lines which force the electron, due to the strong asymmetry of the network, 
to propagate through the network from right to le f t -or  left to right. The physically 
reasonable version of the network, which is symmetric under rotation through 90", does 

t Note that for M > 2 the incoming and outgoing channels have to be placed in an order which is different 
from that of reference [4] to obtain the convention for the transfer matrix used here. 
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not exhibit delocalized states in the approximation (12). Thus, the network model does 
not incorporate the classical percolation transition in a smooth random potential with 
high magnetic field. 

4. Conclusions 

A microscopicinterpretationof the phenomenological parametersof the network model 
introduced by J T Chalker and P D Coddington has been given using a wm-type 
approximation developed by H A Fertig for a smooth potential in high magnetic field. 
It has been possible to determine the characteristic features of potentials which are 
described by the model. Thereby it has been shown that the network model does not 
include the classical percolation transition; the localization-delocalization transition in 
this model is driven solely by backscattering effects. This statement has been affirmed 
by an approximate analytical calculation of the localization length where neglecting the 
backscattering leads to a strong localization of all electronic states. 
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